Early Pauling and Corey devised a novel for the combination of phrases known as beta-turns. In this configuration, the polypeptide backbone winds around itself. In other words, it loops back on itself to reform the helix.

Beta-turns

- **Beta-turns** are short segments of the polypeptide chain that are stabilized by hydrogen bonds between the backbone atoms. These hydrogen bonds form a turn, or a bend, in the chain.
- **4-helix bundle** is a type of protein structure composed of four alpha helices that are packed together.
- **Alpha-helices** are a common type of protein structure characterized by a hydrogen-bonded turns between every third residue. These turns are stabilized by hydrogen bonds between the backbone atoms.
- **β-strands** are segments of the polypeptide chain that are stabilized by hydrogen bonds between the backbone atoms.

Alpha-helices

- **Alpha-helices** are common in globular proteins.
- **Beta-sheets** are also common in globular proteins.
- **Three of the greatest structural scientists of the 20th century** were Pauling, Corey, and Kendrew.

Beta-sheets

- **Beta-sheets** are common in globular proteins.
- **Parallel sheets** are observed, but **antiparallel sheets** with less than four strands are rare.

Comparison of alpha helix and beta pleated sheet

- **Axial distance between adjacent residues** is 3.5 Angstroms.
- There are two residues per repeat unit, which gives the beta-strand a 7 Angstrom pitch.
- This compares with the alpha-helix where the axial distance is 3.5 Angstroms.

Imagining two strands parallel to this, one above the plane of the screen and one behind, it is possible to grasp how the pleated appearance of the beta-sheet arises. Note that in the classical Pauling-Corey models the parallel beta-sheet has somewhat more distorted and bent strands than the antiparallel beta-sheet with its flat, folded appearance and no bending.